tagging-mentions
- cURL
- cURL (Windows)
- JavaScript
- Python
- Python SDK
curl -X POST -H 'X-API-KEY: <YOUR_API_KEY>' -H 'accept: */*' -H 'content-type: application/json' 'https://media-api.geneea.com/v2/nlp/analyze' -d '{
"id": "1234",
"title": "Emmanuel Macron in Germany.",
"text": "Mr. Macron visited a trade show in Munich.",
"returnMentions": "true"
}'
curl -X POST -H "X-API-KEY: <YOUR_API_KEY>" -H "content-type: application/json" "https://media-api.geneea.com/v2/nlp/analyze" -d "{
\"id\": \"1234\",
\"title\": \"Emmanuel Macron in Germany.\",
\"text\": \"Mr. Macron visited a trade show in Munich.\",
\"returnMentions\": \"true\"
}"
const analyze = async (config, input) => {
const response = await axios.post('nlp/analyze', input, config);
return response.data;
};
const input = {
id: '1234',
title: 'Emmanuel Macron in Germany.',
text: 'Mr. Macron visited a trade show in Munich.'
}
analyze(config, input).then(report);
def analyze(input):
return requests.post(f'{BASE_URL}nlp/analyze', json=input, headers=HEADERS).json()
input = {
'id': '1234',
'title': 'Emmanuel Macron in Germany.',
'text': 'Mr. Macron visited a trade show in Munich.',
'returnMentions': True
}
analyze(input)
requestBuilder = g3.Request.Builder(returnMentions=True)
with g3.Client.create(url=f'{BASE_URL}nlp/analyze') as analyzer:
analyzer.session.headers.update({'X-API-Key': API_KEY})
request = requestBuilder.build(id=str('1234'), title='Emmanuel Macron in Germany.', text='Mr. Macron visited a trade show in Munich.')
result = analyzer.analyze(request)
print("Tags:")
for t in result.tags:
print(f'\t{t.type}: {t.stdForm} ({t.gkbId}) relevance: {t.relevance}')
for m in t.mentions:
## charSpan can be used for highlighting in the original text
print(f'\t{m.text}; {m.mwl}; {m.tokens.charSpan}')